

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Intelligenza Artificiale, come cambierà il futuro delle nostre discipline: SIRM, AIMN, AIRO Il punto di vista del radioterapista oncologo Valerio Nardone

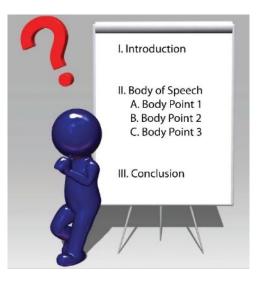
Dipartimento di Medicina di Precisione, AOU Vanvitelli, Napoli

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Disclosures

Per quanto concerne tale presentazione, dichiaro di non avere avuto alcuna relazione rilevante (diretta od indiretta) di tipo finanziario con alcuna compagnia farmaceutica negli ultimi 24 mesi che possa essere considerato un **conflitto di interesse.**



Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Outline

> Definition;


- Application in RadOnc;
- New application (ESTRO, ASTRO);
- Reaction of our community
- Is there a future for #RadOnc with AI?

AIRO2023

In computer science, artificial *intelligence* (AI), is intelligence demonstrated by machines, in contrast to the *natural intelligence* displayed by humans and animals. The term AI is used to describe machines that mimic *cognitive* functions associated with human minds, such as *learning* and problem solving.

Radioterapia Oncologica:

l'evoluzione al servizio dei pazienti

AIRO2023 Other terms

- *Machine learning:* it is an application of AI that provides systems the ability to aumatically learn and improve from experience without explicit programmation;
- Neural Networks: are computing systems inspired bu the biological neural networks and nodes called artificial neurons.
- Data mining: is the practice of esaming large databases to generate new informations;

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Artificial Intelligence in Factories

Japan ranked fourth in the world: In 2016, 303 robots were installed per 10,000 employees in the manufacturing industry.

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazient

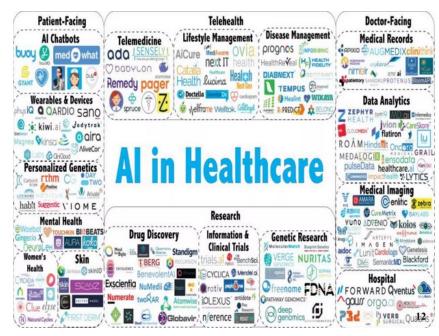
AI in Health

Timeline of AI in health

1955

Term coined by John McCarthy. Founded as an academic discipline in 1956 in US. Growth of microcomputer and new levels of network connectivity. AI systems in healthcare was designed to accommodate the absence of perfect data and build on the expertise of physicians.

1960-1970


Produced first problemsolving program, or expert system, known as Dendral assisting to identifying bacteria and recommending antibiotics

2019 & onwards

 Discovery and development of drugs Preclinical research Personalized Health Care And many more

2010-2019

- Genomic sequencing databases
- AI in electronic health record systems
- Natural language processing and computer vision,
- · Robot-assisted surgery. etc

AIRO2023

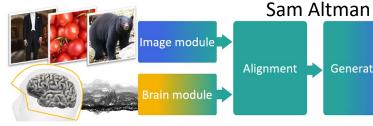
Special Reports > Exclusives

AI Passes U.S. Medical Licensing Exam

- Two papers show that large language models, including ChatGPT, can pass the USMLE

by Michael DePeau-Wilson, Enterprise & Investigative Writer, MedPage Today January 19, 2023

BRAIN DECODING: TOWARD REAL-TIME RECONSTRUCTION OF VISUAL PERCEPTION


Yohann Benchetrit^{1,*}, Hubert Banville^{1,*}, Jean-Rémi King^{1,2} ¹FAIR, Meta, ² Laboratoire des Systèmes Perceptifs, École Normale Supérieure, PSL University {ybenchetrit, hubertifs, jeanremi}@meta.com

Mark Zuckerberg

• Viewed Image

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

AIRO2023

Giuliano Amato

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Jurist, politician, former minister now newly elected president of the AI algorithms commission, just wanted by the government. Among the objectives is the study of the applications of AI in the publishing world.

85 years old.

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Sybil: A Validated Deep Learning Model to Predict Future Lung Cancer Risk From a Single Low-Dose Chest Computed Tomography

Peter G. Mikhael, BSc^{1,2}; Jeremy Wohlwend, ME^{1,2}; Adam Yala, PhD^{1,2}; Ludvig Karstens, MSc^{1,2}; Justin Xiang, ME^{1,2}; Angelo K. Takigami, MD^{3,4}; Patrick P. Bourgouin, MD^{3,4}; PuiYee Chan, PhD⁵; Sofiane Mrah, MSc⁴; Wael Amayri, BSc⁴; Yu-Hsiang Juan, MD^{6,7}; Cheng-Ta Yang, MD^{6,8}; Yung-Liang Wan, MD^{6,7}; Gigin Lin, MD, PhD^{6,7}; Lecia V. Sequist, MD, MPH^{3,5}; Florian J. Fintelmann, MD^{3,4}; and Regina Barzilay, PhD^{1,2}

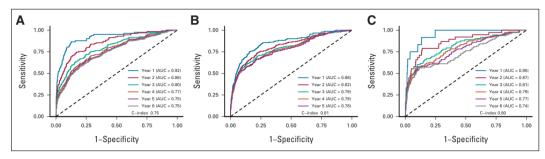


FIG 2. Receiver operating characteristic curves displaying Sybil's ability to predict future lung cancer over 6 years following a single low-dose computed tomography from the (A) NLST, (B) MGH, and (C) CGMH test sets. Cls for each curve can be found in Table 1. AUC, area under the curve; C-index, concordance index; CGMH, Chang Gung Memorial Hospital; MGH, Massachusetts General Hospital; NLST, National Lung Screening Trial.

Journal of Clinical Oncology[®]

Volume 41, Issue 12 2191

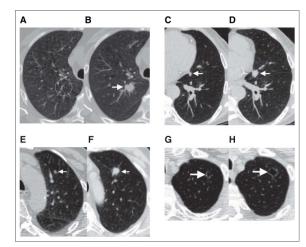
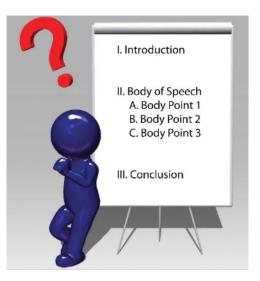


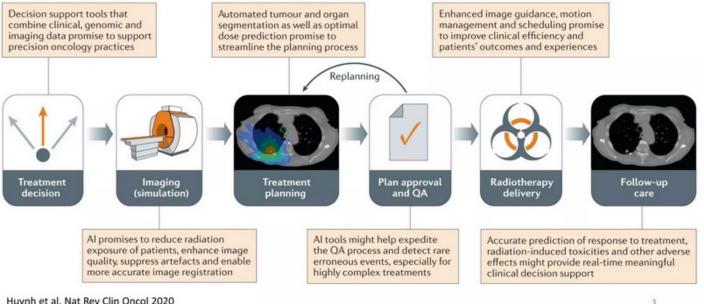
FIG 3. Examples of screening scans with negative clinical interpretations (Lung-RADS 1 or 2) and high Sybil risk scores, who subsequently developed lung cancer. Paired sets of images from four separate subjects from the National Lung Screening Trial and Massachusetts General Hospital cohorts illustrating Sybil's potential in predicting future lung cancer. Clinical (preoperative) or pathologic (postoperative) stages are provided using



Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Outline

- Definition;
- > Application in RadOnc;
- New application (ESTRO, ASTRO);
- Reaction of our community
- Is there a future for #RadOnc with AI?



AIRO2023

Radioterapia Oncologica:

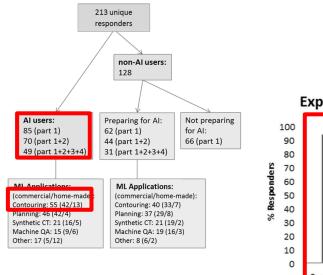
Al in Radiation Oncology


Huynh et al. Nat Rev Clin Oncol 2020

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

The Emergence of Artificial Intelligence within Radiation Oncology Treatment Planning, Tetherton et al. Oncology 2021


Hype cycle. This figure features a hype cycle curve for three major innovations in radiation oncology (triangle: Monte Carlo; square: Inverse optimization/IMRT; circle: deep learning-based contouring). The curve depicts expectations by the target audience (those in radiation oncology and medical physics) as a function of time. Yellow, magenta, cyan, green, and blue portions of the curve denote "innovation trigger," "peak of inflated expectations," "trough of disillusionment," "slope of enlightenment," and "productivity plateau" regions, respectively.

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Use of AI in 2020

Expected ML Application within 5 years

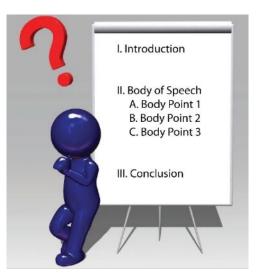
C.L. Brouwer et al. Physics and Imaging in Radiation Oncology 2020

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

Radioterapia Oncologica: l'evoluzione al servizio dei pazi

Supplemental Table 1. Number of Radiation Oncology Departments using or preparing to use machine learning applications in clinical practice per country

Radiation Oncolo Machine Lear	gy Departments ning Application			
incomite 2001	Clinical	Preparing		
France	8			
Italy	7	5		
Netherlands	8	3		
Spain	7	2		
Australia	5	4		
Belgium	5	3		
United Kingdom	4	3		
Denmark	3	2		
Switzerland	3	3		
United States of Amerika	3	1		
Germany	2	2		
Norway	2	3		



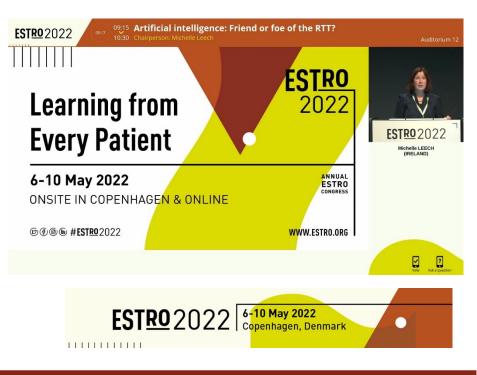
Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Outline

- Definition;
- Application in RadOnc;
- > New application (ESTRO, ASTRO);
- Reaction of our community
- Is there a future for #RadOnc with AI?

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

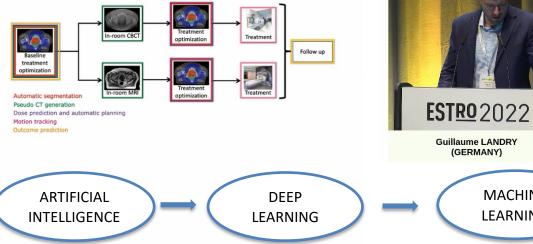

AI: friend or foe

AI is a friend

- Time reduction for the radiotherapist (contours, planning),
- Improve accuracy and precision in RT treatments,
- Predict toxicity,
- Cost reduction.

Al is a foe

- " I may take your job ",
- Incorrect treatment decisions with incomplete or biased data,
- Manipulation of AI algorithms or steal patient data by hackers.


AIRO2U2 AI in the RT workflow

Summary

Many roles for AI in the RT workflow

- AI algorithms are applicable to almost all aspects of the RT workflow
- Commercial solutions are now available
- Segmentation is one of the most visible applications
- Pseudo CT software is also making its way into the clinic
- Some aspects will naturally remain research topics

MACHINE

LEARNING

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

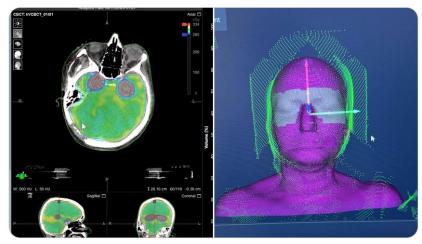
AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazient

UAB Radiation Oncology @UABradonc

Congrats to our @UABmedphys #KillingCancerWithCode team who won 1st place at the @ESTRO_RT 2023 Auto-RTP Challenge. 13 international teams from academia and industry participated in the competition, all leveraging #AI and software tools to fully automate #RT treatment planning

Traduci post



...

UTSW Radiation Oncology @UTSW_RadOnc

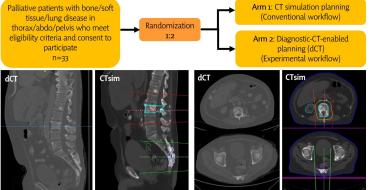
This is made possible by AI-guided diagnostics MRI to synthetic CT generation, surface image guidance setup, and Ethos online adaptive therapy. This treatment is traditionally complicated and takes days to plan. Now with AI and Ethos, we can do day 0 immediate treatment! Traduci post

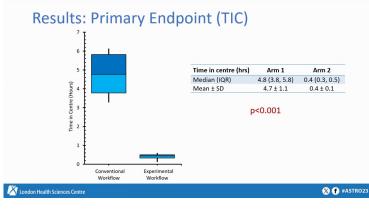
...

AIRO2023

O'Neil et al. BMC Palliative Care (2022) 21:220 https://doi.org/10.1186/s12904-022-01115-y

BMC Palliative Care


STUDY PROTOCOL


Open Access

DART: diagnostic-CT-enabled planning: a randomized trial in palliative radiation therapy (study protocol)

Melissa O'Neil, Timothy K. Nguyen, Joanna Laba, Robert Dinniwell, Andrew Warner and David A. Palma 🧿

Datt Diagnostic-CT-Enabled Planning: A Randomized Trial in Palliative Radiation Therapy

Radioterapia Oncologica:

Melissa O'Neil MRT(T) @Melissa_O_Neil

So excited to present DART RCT at the #ASTRO2023 late-breaking abstract and press sessions

← Diagnostic CT-based planning ↓ pt time at cancer center from almost 5hrs to <0.5hrs w/out detriment to plan quality

🗲 Pts reported 👽 time burden

Do you@? Join our Delphi study!

...

ARO2023 Impact of AI on Quality of Care, Clinical Practice and Training

- Variation in quality exists, but regionalization is NOT the solution;
- AI can reduce unrewarding tasks that consume time/cognitive burden;
- Al can also inform or facilitate strategies to enhance quality (simulation training for complex cases, patient selection for escalation of clinical care);
- There will be pluses and minuses, but change is certain;
- Success will come through networking within us and across disciplines;

Erin Gillespie

Associazione Italiana Radioterapia e Oncologia clinica

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

 AI derived prognostic biomarkers provide personalized risk estimates, that when grouped allows more streamlined communication;

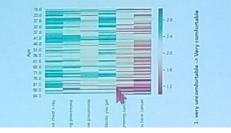
Deep learning in digital histopathology for prostate cancer

- ArteraAI MMAI prognostic tool identifies 6-fold more low-risk patients than NCCN (safe omitting of ADT with RT, with a NNT>25);
- Prognostic biomarkers help with shared-decision making to avoid futile treatment intensification;
- Use of AI tools leveraging digital pathology improves prognostication, enabling us to determine the optimal treatment plan for the single patient (precision medicine);

Jonathan Tward

ARO2023 Current Progress of Machine Learning in Radiation Oncology

Please tell me how concerned you are about the use of Al in medicine for each of the following:


3 Yory post

6.100

- 1. That my health information will be kept confidential
- 2. That AI will make the wrong diagnosis
- That AI will mean I spend less time with my doctor
- That AI will increase my healthcare costs

For each of the following, please tell me how comfortable you would feel with Al doing some of the things your doctor usually does:

- 1. Reading your chest x-ray
- 2. Diagnosing pneumonia
- 3. Telling you that you have pneumonia
- 4. Recommending your antibiotic
- 5. Diagnosing cancer
- 6. Telling you that you have cancer

Sanjay Aneja

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Radiography 29 (2023) S112–S116

Contents lists available at ScienceDirect Radiography

journal homepage: www.elsevier.com/locate/radi

Patient views on the implementation of artificial intelligence in radiotherapy

S. Temple^{*}, C. Rowbottom, J. Simpson The Clatterbridge Cancer Centre NHS Foundation Trust, 65 Pembroke Place, Liverpool L7 8YA, UK

Overall, there was a moderately negative patient view towards the use of AI in radiotherapy.

Certain factors drew a more negative response than others, for example <u>patients desire significant personal</u> <u>interaction with healthcare</u> <u>professionals during the course of</u> <u>their treatment.</u> No correlations with age and gender.

ARO2023 Exploring ethical challenges in RadOnc AI

- While waivers can be ethical and pragmatic solutions, patients have no idea that AI is being used in research or care involving them;
- If for minimal risk for quality systems we can rely on good ML practice, for higher risk we necessitate prospective informed consent!
- Umbrella consent needed to inform patients;
- Additional disclosure duties: patient access to information about specific AI algorithms used in their care;

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Subha Perni

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Conditions	Study Titles	NCT Numbers	Interventions		Conditions	Study Titles	NCT Numbers	Interventions
Lung Cancer	MIRA Clinical Learning Environment (MIRACLE): Lung	NCT05689437	Various machine learning models for ILD prediction, SGR prediction, and lung density monitoring		Various Cancers (Arrhythmias, Cardiac, Breast, Prostate, Brain, Kidney, Head and Neck, Liver, Pancreatic, Spinal)	LEARN: Learning Environment for Artificial Intelligence in Radiotherapy New Technology	NCT05184790	
Early Stage Non- small Cell Lung Cancer, Non-small Cell Lung Cancer	Computed Tomography-Guided Stereotactic Adaptive Radiotherapy (CT-STAR) for the Treatment of Central and Ultra-Central Early- Stage Non-Small Cell Lung Cancer	NCT05785845	Computed tomography-guided stereotactic adaptive radiotherapy, ETHOS device					
Various heart- related conditions	Stress Echo 2030: the Novel ABCDE- (FGLPR) Protocol to Define the Future of Imaging	NCT05081115	Various diagnostic tests related to stress echo		Head and Neck Cancer	Al for Head Neck Cancer Treated With Adaptive RadioTherapy (RadiomicART)	NCT05081531	Adaptive Radiotherapy
Breast Cancer, Axillary Lymph Node Dissection, Breast Cancer Related Lymphedema, Axillary Reverse Mapping		xillary surgery based on lymphedema rediction nomogram		Lung Carcinoma	Stereotactic Body Radiation Therapy Planning With Artificial Intelligence-Directed Dose Recommendation for Treatment of Primary or Metastatic Lung Tumors, RAD-AI Study	NCT05802186	Various imaging and radiation procedures	
					Lung Cancer	ARtificial Intelligence for Gross Tumour vOlume Segmentation	NCT05775068	Radiotherapy
Esophageal Neoplasm	Response Prediction to Neoadjuvant Chemoradiation in Esophageal Cancer Using Artificial Intelligence & Machine Learning	NCT04489368	Neo-Adjuvant Radiotherapy, Neo-Adjuvant Chemotherapy, Esophagectomy		Pelvic Cancer	Post Radiotherapy MRI Based AI System to Predict Radiation Proctitis for Pelvic Cancers	NCT04918992	Artificial Intelligence
Metastasis to Liver, Colorectal Cancer	Comparison of Image Quality Between "Double Low Dose" Liver CT	NCT05790590	Double low dose CT, Standard dose CT		43 studies found in			
Various cancers (Prostate, Glioblastoma, Head and Neck, Kidney, Cervix)	MRI Guided Radiotherapy and Radiobiological Data: the ISRAR Database	NCT06041555	3 MRI sequences	ClinicalTrials.gov				

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

PRO-React: Enhancing Cancer Patient Care

Study Design	Go to 💌
Study Type 🚯 :	Observational [Patient Registry]
Estimated Enrollment ():	166000 participants
Observational Model:	Cohort
Time Perspective:	Prospective
Target Follow-Up Duration:	6 Months
Official Title:	Development of an Artificial Intelligence-based Incident Prediction Algorithm to Improve Cancer Patient Care and Patient Safety
Actual Study Start Date ():	August 3, 2022
Estimated Primary Completion Date ():	December 2025
Estimated Study Completion Date ():	December 2025

•Early Incident Prediction

- PRO-React predicts incidents early, reducing risks.
- •Resource Optimization
 - Identifying "low-risk" cases optimizes resource use.

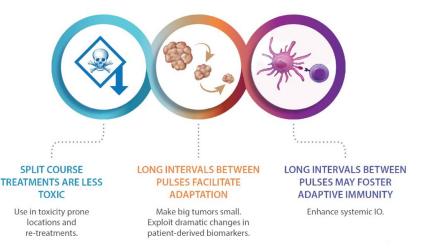
•OMCAT Register

• Combines PRO data for accurate predictions.

•PRO Time Series Benefit

• High-frequency PRO data reduces delays.

AIRO2023


Big Data Initiative: **Optimizing Data That** is **AI-Driven for Patient Treatments**

- AI mining of information from the patients through biopsies, blood examples, imaging;
- measuring biologoical prognostic changes along the way;
- exploring a mosaic of information;
- defining hypotheses in reaction to mechanistic understanding;

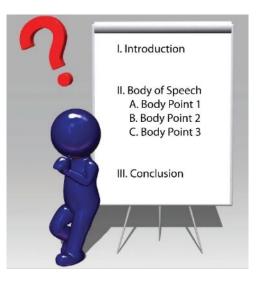
Three Attractions to PULSAR

Radioterapia Oncologica:

l'evoluzione al servizio dei pazienti

Robert Timmerman, M.D. Professor and Department Chair

Illustration by Townsend Majors.

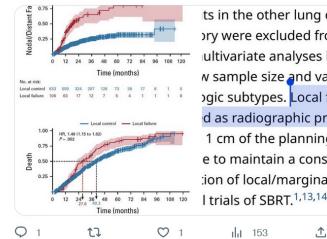


Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Outline

- Definition;
- Application in RadOnc;
- New application (ESTRO, ASTRO);
- **Reaction of our community**
- Is there a future for #RadOnc with AI?

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti


Genomic analysis in oncology with AI: the opportunity for RADONC

Drew Moghanaki @DrewMoghanaki · 16h In risposta a @theabzlab

Congratulations on pushing us into the future.

I noticed a very high event rate in your cohort, suggesting these data will need to be validated in a healthier cohort to be applicable to operable pts.

ts in the other lung or pleura bry were excluded from univar ultivariate analyses because o w sample size and variability in ogic subtypes. Local failure was d as radiographic progression 1 cm of the planning target e to maintain a consistent ion of local/marginal failure in l trials of SBRT.^{1,13,14} Prescripti

Drew Moghanaki @DrewMoghanaki · 16h In risposta a @DrewMoghanaki e @theabzlab

This is a MUST READ paper for anyone coding local failures after SBRT. It shows how easy, but not how often, it is for coders to be fooled and overcall LF. doi.org/10.1016/j.ijro...

idence of High-Risk Radiologic Features in ients Without Local Recurrence After reotactic Ablative Radiation Therapy for y-Stage Non-Small Cell Lung Cancer Ronden, BSc,* J.R. van Sörnsen de Koste, PhD,* C. Johnson, BSc,

Slotman, MD, PhD,* F.O.B. Spoelstra, MD, PhD,* . Haasbeek, MD, PhD,* G. Blom, MD,* E.M. Bongers, MD,* arner, MSc. A. Ward, PhD. D. Palma, MD, PhD, FRCPC. Senan, MRCP, FRCR, PhD*

Jun 1, 2017, and in revised form Sep 11, 2017. Accepted for publication Sep 14, 2017.

11

recurrence

stereotactic ablative

tion therapy for early-

non-small cell lung er, focal lung fibrosis

e difficult to distinguish

tumor recurrence. All

uted tomography (CT)

of 88 patients with no

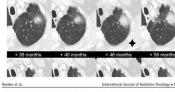
in local recurrence were

d by 5 clinicians, who

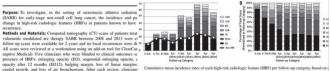
blinded to clinical out-

s. The most common

risk radiologic features


) identified were

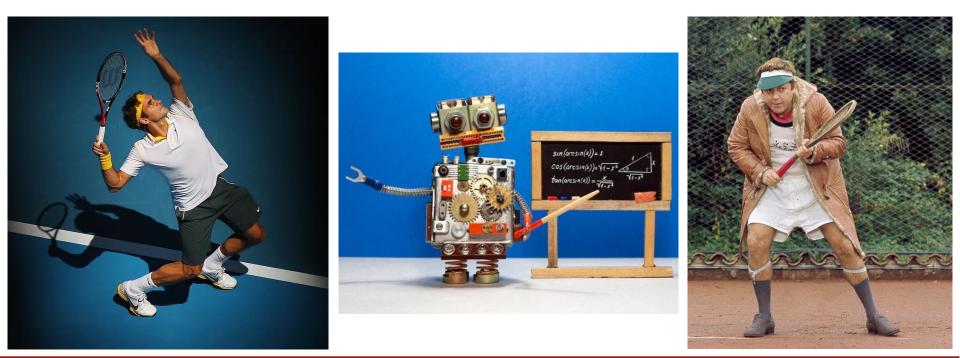
Q


tment of Radiation Oncology, VU Medical Center, Amsterdam, The Netherlands; 'London al Cancer Program, London Health Sciences Centre, London, Ontario, Canada; and ments of Oncology and Medical Biophysics, University of Western Ontario, Landon, Ontario

mended follow-up procedures based on published recommendations.

0

...

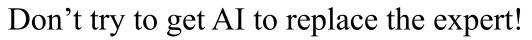

patients and 747 CT scans for (A) percentage of total scans with overlaid incidence rates of any HRF; and (B Results: A total of 88 patients (747 CT scans) were evaluated. The HR e of total scans normalized to follow-up category cumulative totals. Abbreviations: BM = bulging m cranio-caudal growth; EO = enlarging opacity; EO12 = enlarging opacity after 12 months; LOB = loss frequently recorded by >3 observers on at least 1 follow-up scan were FO togram; LOM = loss of linear margin; SE = sequential enlarging opacity

> 107 tht.

1

ARO2023 Things to remember: AI performance depends on the TRAINING

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI



Associazione Italiana Radioterapia e Oncologia clinica

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Digital Rectal Examination Is Not a Useful Screening Test for Prostate Cancer

Todd Scarbrough @toddscarbrough

Blowing raspberries in radiologists' Boundary replace a single iota of anything we ware exams)

Agne Krilaviciute^{*a*,†}, Nikolaus Becker^{*a*,†}, Jale Lakes^{*b*}, Jan Philipp Radtke^{*b*}, Markus Kuczyk^{*c*}, Inga Peters^{*c*,‡}, Nina N. Harke^{*c*}, Jürgen Debus^{*d*,e}, Stefan A. Koerber^{*d*}, Kathleen Herkommer^{*f*}, Jürgen E. Gschwend^{*f*}, Valentin H. Meissner^{*f*}, Axel Benner^{*g*}, Petra Seibold^{*a*}, Glen Kristiansen^{*h*}, Boris Hadaschik^{*ij*}, Christian Arsov^{*b*,§}, Lars Schimmöller^{*k*}, Frederik Lars Giesel¹, Gerald Antoch^{*k*}, Marcus Makowski^{*m*}, Frank Wacker^{*n*}, Heinz-Peter Schlemmer^{*o*}, Rudolf Kaaks^{*p*,||}, Peter Albers^{*a*,*b*,||,*}

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Radiotherapy and Oncology 186 (2023) 109747

Contents lists available at ScienceDirect Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Original Article

An investigation into the risk of population bias in deep learning autocontouring

Yasmin McQuinlan^a, Charlotte L. Brouwer^{b,*}, Zhixiong Lin^c, Yong Gan^c, Jin Sung Kim^d, Wouter van Elmpt^e, Mark J. Gooding^{f,g}

Mark Gooding @SciChief

Is your #AI #autocontouring for #RadOnc racist?

It might be reasonable to assume we are all the same on the inside, but could bias inherent in a training set from one demographic impact performance in another?

Check for

...

No More

observer China Netherlands South Korea

A. Contour Acceptance by Patient Origin

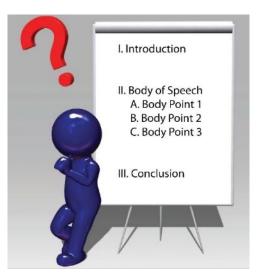
AIRO2023

William A Hall, MD @whallradonc

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Two ways to look at AI: Fear or Excitement?

- 1. I want my oncological modalities to be perfect, no failures, no toxicity;
- 2. I would like to have predictive models to educate patients as to their outcomes from specific therapies;
- 3. AI tools will only replace doctors who don'tuse them with doctors that do!



Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Outline

- Definition;
- Application in RadOnc;
- New application (ESTRO, ASTRO);
- Reaction of our community
- > Is there a future for #RadOnc with AI?

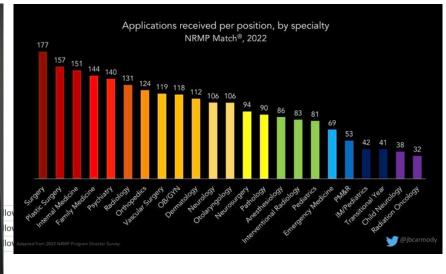
AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Where were we until 20 years ago?

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

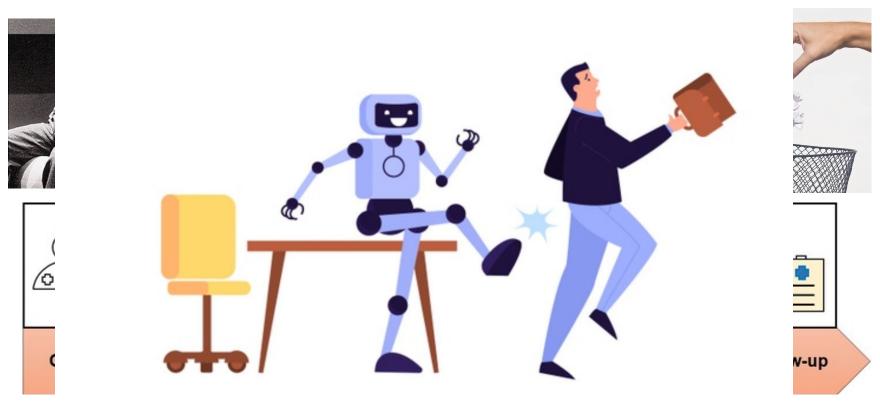

What is happening now?

La radiologia medica (2023) 128:252–260 https://doi.org/10.1007/s11547-022-01586-

SOAP Applicant Characteristics • From 2014-2023: • 7% (132/1,952) of all RO residency positions were filled via the SOAP Proportion of all RO Positions Available Per Year filled in the Of these 132 SOAP applicants: SOAP from 2014-2023 • 91% were filled from 2019-2023 • 73% were United States (US) MD seniors • 17% were US MD graduates • 11% were other graduates (US IMGs, US DO Grads, IMGs, US DO Seniors) • Since 2019, at roughly 76% (88/116) of RO positions filled in the SOAP were accepted by applicants who did not list an RO program in their initial NRMP 2016 2017 2018 Certified Rank List

Slide courtesy of ARRO Kelsey Corrigan MD, MPH

ASTRO 65TH ANNUAL MEETING | October 1-4, 2023 🕺 👔 #ASTRO23



ChelseaP

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Where will we be in 10 years?

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

AIRO2023

Conclusions

- In the next years we will see many different application of AI in RadOnc workflow;
- Current applications focus on contouring, planning, adaptive;
- Future development in other areas (genomic profiling, radiomics) could have an high impact on RadOnc;
- Ethical challenges need to be solved;
- A big effort of RadOnc community is needed to integrate AI and build a solid future for our community!

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

AIRO2023

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

There is no SOUL in the MACHINE. Only in front of it.

Without you, it's just DATA.

Radioterapia Oncologica: l'evoluzione al servizio dei pazienti

Thank you!

BOLOGNA, 27-29 OTTOBRE 2023 PALAZZO DEI CONGRESSI

